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Sketch of Flow and Sediment Transport 
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3-D Hydrodynamic Equations 
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For gradually varied open-channel flows, ignoring the inertia 

and diffusion effects in the vertical momentum equation yields 

Hydrostatic Pressure Assumption 
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Thus, the horizontal momentum equations become: 
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The channel bed and banks generally vary in much slower 

speed than the flow, so the non-slip condition is applied there: 

Boundary Conditions of Flow 

The water surface is described by  

A particle at (x, y, z) on the water surface has  
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Turbulence Closure 

The often used turbulence closure models are based on Boussinesq’s eddy 

viscosity concept: 
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 Zero-equation turbulence models 

 Mixing length model 

 Subgrid model 

 

 Two-equation turbulence models 

 Standard k-ε turbulence model 

 RNG k-ε turbulence model 

 Nonequilibrium k-ε turbulence model 

 k-ω turbulence model 

 

 Other advanced models: Non-linear k-ε turbulence model, Reynolds 

stress/flux model, algebraic Reynolds stress/flux model, LES, DNS, etc. 
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Two-Equation Turbulence Models 

In the k-ε turbulence model, the eddy viscosity is determined: 

 

 

The modeled k-equation: 

 

 

 

and the modeled ε-equation: 
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The coefficients of the standard, non-equilibrium, and RNG k-ε 

turbulence models are listed in Table 2.3. 

 

k-  Model cμ cε1 cε2 σk σε 
Standard 0.09 1.44 1.92 1.0 1.3 

Non-equilibrium 0.09 1.15+0.25Pk/ε 1.90 0.8927 1.15 

RNG 0.085 1.42-η(1-η/η0)/(1+βη3) 1.68 0.7179 0.7179 

The k-ω turbulence model is also often used, which defines  

)( k  09.0with 
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Other Turbulence Models and Simulations 

 

•Nonlinear k-ε Turbulence Models 

 

•Algebraic Reynolds Stress/Flux Model 

 

•Reynolds Stress/Flux Models 

 

•Large Eddy Simulation (LES) 

 

•Direct Numerical Simulation (DNS) 



Sediment Transport Modes 

10 
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3-D Sediment Transport Equation 

At water surface, 

At the interface between bed load and suspended load, a 

concentration (at equilibrium condition) may be specified: 

but more generally, the entrainment and deposition fluxes at 

the interface are specified as 
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Depth-averaged 2-D Flow Equations 

Depth-averaging the continuity equation 

Define the depth-averaged quantity: 
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Application of boundary conditions yields 
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Depth-averaging the x-momentum equation: 

The Leibniz integral rule 
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Application of boundary conditions yields 
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Dispersion momentum transports 
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which are usually combined with the turbulent stresses Txx, Txy, 

Tyx, and Tyy in nearly straight channels. In curved channels, these 

dispersion transports need to be modeled additionally. 
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Define the depth-averaged 2-D suspended-load concentration 

Use of the Leibniz integral rule and boundary conditions yields 
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Depth-averaging the sediment transport equation: 
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Depth-averaged 2-D Sediment Equations 
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Dispersion fluxes of suspended load: 
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Because βs < 1, it accounts for the temporal lag between flow 

and suspended-load transport. 
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If the depth-averaged 2-D suspended-load concentration is 

defined as 

However, corresponding to definition II, the suspended-load 

discharge should be defined as qs= βsUhC, rather than qs= UhC. 
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Note that definition I is used here. 
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The bed-load mass balance equation: 

where ub is the bed-load velocity. Because ub is slower than the 

flow velocity, the above equation accounts for the temporal lag 

between flow and bed-load transport. 
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Summation of bed-load and suspended-load transport equations 

yields the total-load transport equation: 

with 
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Depth-averaged 2-D suspended-load transport equation 

 bsscbb cCED 

bsb cD The near-bed deposition flux                needs to be modeled, 

because cb is not solved in a depth-averaged 2-D (1-D) model. 

The near-bed concentration cb is often related to the depth-averaged  

concentration C by cb = αcC, so 

where αc is the adaptation (recovery) coefficient, and cb* is 

determined by an empirical formula.  

Exchange Flux of Suspended Load Near Bed 
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Use of the Rouse distribution yields (Minh Duc, 1998)  

Lin (1984) proposed 

  dz
hz

zh
h

U
h

c

s 

 















 














U

s
c




 ln55.025.3

which is used by Spasojevic and Holly (1990). 
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 CCED scscbb 

If the near-bed equilibrium concentration cb* is related to the depth-

averaged  equilibrium concentration C* by cb* = αc*C*, then  

where αc* is the adaptation (recovery) coefficient under the 

equilibrium condition, and C* is determined by an empirical formula.  

In equilibrium, αc* = αc;  in non-equilibrium, αc* ≠ αc . 

Because equilibrium is acquired through exchange between bed 

material and moving sediment near the bed, usually for erosion C/cb 

≤ C*/cb*  and αc ≥ αc*; for deposition C/cb ≥ C*/cb*  and αc ≤ αc*. 
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The difference between αc and αc* is often assumed to be negligible, 

for simplicity. Thus, the net exchange flux can be determined by 

(Han, 1980; Wu, 1991)   

where α is a new adaptation coefficient.  

From                                                , one can derive 

For erosion, usually C/cb ≤ C*/cb*  and αc ≥ αc*, thus α ≤ αc and α ≤ 

αc*.  For deposition, usually C/cb ≥ C*/cb*  and αc ≤ αc*, thus α ≤ αc 

and α ≤ αc*. 
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Armanini and de Silvio’s function: 

where a is thickness of the bottom layer.  

Zhou and Lin (1998) proposed 
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where                        , and σ1 is the first positive root of the 

following equations: 
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Comparison of Armanini and de Silvio’s and Zhou and Lin’s 

functions. 

Both functions give α > 1 theoretically. 
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Factors Affecting α: 

•Cross-sectional shape 

•Effect  of sediment concentration on settling velocity 

•Lift force (Saffman force) 

•Bed forms 

In 1-D models, α is often given 0.25 for strong deposition; 1.0 

for strong erosion; and 0.5 for mild deposition and erosion 

(Han, 1980; Wu, 1991). 

Calibration of α using measurement data is recommended for 

a specific case study. 
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Equilibrium Transport Model 
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Depth-averaged 2-D suspended-load transport equation 
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2-D bed-load mass balance equation 

Three unknowns: C, qb, and ∂zb/∂t, but there are only two 

equations.  One equation is needed to close the model. 

Equilibrium Transport Model of Bed Load 
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Note that the difference between Lb, Lt, and L. Lb is the adaptation 

length of bed load. Lt is the adaptation length of total load. L is 

approximately equal to Lt in general and reduces to Lb in the case 

of bed load. 

Bed Change Equations 
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From 

one can derive 
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Thus, the sediment transport model is also closed. 
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Approach I: Bed-Load/Suspended-Load Model 

2-D bed-load transport equation 

Bed change equation 
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Depth-averaged 2-D suspended-load transport equation 
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Approach II: Bed-Material Load Model 

Sediment near-bed exchange equation 

Combining the above equations yields 
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Depth-averaged 2-D bed-material (or total) load transport equation 
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The last two equations are the governing equations for model approach II.  They 

are closed by assuming rs=qs*/qt* and relations for βt and αt. 
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For suspended load 

Adaptation Length of Sediment 

For bed load, Lb is closely related to bed forms, and assumed to 

take the length of the dominant bed forms.  

For bed-material load 

s
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Uh
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 sbt LLL ,max ssbst LrLrL  )1(

For wash load, α is set as zero and Lt is given infinitely large.  

or 

This option gives more 

stable solution 

Calibration of Lb and Lt using site specific data is recommended. 
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In the case of low sediment concentration, the interactions among 

the moving sediment particles are usually negligible, so that each 

size class of the moving sediment mixture can be assumed to 

have the same transport behavior as uniform sediment. 

Non-uniform Sediment Transport 

Therefore, the sediment mixture is divided to N size classes.  

How many classes are enough? 

Suitable to the study case 

Restricted by measurement 
accuracy 

Restricted by computational 
efficiency 

Size classes cover all bed load, 
suspended load, bed material, and 
bank material  

Each size class has bed load and 
suspended load 
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Representative Size of Each Class 

Given the lower and upper bounds of sediment 

size of each size class, the representative size is 

determined as  

upperilowerii ddd ,,

  2,, upperilowerii ddd 

  3,,,, upperiloweriupperilowerii ddddd 

or 
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The transport of the kth size class of suspended load is described by 

The transport of the kth size class of bed load: 
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The fractional bed change is determined by 

The total bed change is determined by 
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The bed material is divided to an adequate number of layers. The 

first (surface) layer is called the mixing layer.  

Bed Material Sorting 

where δm is the mixing layer thickness; pbk is the size composition.  
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The change in size composition of the mixing layer is determined by  
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Bed Material Sorting (cont’d) 

where  psbk is the fraction of the kth size class of bed material 

contained in the second layer, δs is the thickness of the second 

layer, and 
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size composition of the second layer is determined by 
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Mixing Layer Thickness 

The thickness of the mixing layer is related to the time scale 

under consideration. For very short, intermediate, and long time, 

it may be at the order of sediment size, bed form height, and bed 

deformation thickness, respectively. 
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(Karim and Kennedy, 1982) 

(Borah et al., 1982) 

(Van Niekerk et al., 1992) 

(Wu and Vieira, 2002) 

Available methods for mixing layer thickness: 
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3-D Sediment Transport Model 

At the interface between bed load and suspended load: 
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Bed-load transport equation 

Bed change equation 



Computational Conditions 

1. Initial Bed Material Gradation 

2. Time Series of Inflow Sediment Discharge 

3. Inflow Sediment Gradation 
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Boundary Conditions 

Inlet 




B
m

m

bk
bk

dyq

qQ
q

b

b

0 


B
m

m

sk
sk

dyq

qQ
q

s

s

0

0bkq 0




n

Ck

0




s

Ck

Wall Boundaries 

Outlet 

43 



1-D Non-equilibrium Transport Model 
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Local Equilibrium Assumption 

Mass Balance – Exner Equation 

1-D Equilibrium Transport Model 
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Sediment Overloading 

Equil. Model 
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Non-Equil. Model 
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Channel Degradation (Newton, 1951) 

Mean Sediment size: 0.69mm  

L= 9.14m, D=0.3048m 
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Simulation using an Equilibrium Model 
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Simulation with a Non-equilibrium Model 
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Summary of Non-Equilibrium Transport Model 

• Well posed mathematically. 

• Considers the temporal and spatial lags between flow and 
sediment transport; 

• Easily handle the constrained sediment loading problem 
(strongly over- or under-loading); 

• Easily handle the hard bottom problem; 

• Calculate bed load and suspended load separately or 
combine them as bed-material load; 

• Calculate wash load and bed-material load using a unified 
transport equation; 

• More stable than the traditional equilibrium transport 
model. 
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