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3-D Hydrodynamic Equations
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Hydrostatic Pressure Assumption B

For gradually varied open-channel flows, ignoring the inertia
and diffusion effects in the vertical momentum equation yields

ap__
oz P

In cases of a constant density of water:

p=p,+ 0z —2)

Thus, the horizontal momentum equations become:
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Boundary Conditions of Flow e

The channel bed and banks generally vary in much slower
speed than the flow, so the non-slip condition is applied there:

U, =0, u,, =0, u, =0

The water surface is described by

z=12,(X,Y,1)
A particle at (x, y, z) on the water surface has
dx dy dz
—=U —=Uu — =
d ™ da " T

Derivation of the function z=z(x, y, t) with respect to t yields
the free-surface kinematic condition:
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Turbulence Closure R

The often used turbulence closure models are based on Boussinesq’s eddy
Viscosity concept:
6Ui 6uj ] 2

TU IO t [axj ax
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» Zero-equation turbulence models
» Mixing length model
» Subgrid model

» Two-equation turbulence models
» Standard k-¢ turbulence model
» RNG k-¢ turbulence model
» Nonequilibrium k-¢ turbulence model
» K- turbulence model

» Other advanced models: Non-linear k-¢ turbulence model, Reynolds
stress/flux model, algebraic Reynolds stress/flux model, LES, DNS, etc.
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=Two-Equation Turbulence Models
In the k-¢ turbulence model, the eddy viscosity is determined:
k2

Y e

v, =C

The modeled k-equation:

8k+ 0 (k) = o | v, ok VP g
ot OX OX; | oy OX;

and the modeled e-equation:
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The coefficients of the standard, non-equilibrium, and RNG k-¢
turbulence models are listed in Table 2.3.

k-¢ Model C, C.q C.o 0y o,
Standard 0.09 1.44 1.92 1.0 1.3
Non-equilibrium 0.09 1.15+0.25P, /¢ 1.90 0.8927 1.15
RNG 0.085  1.42-n(1-niny)/(1+px%)  1.68 0.7179 0.7179

The k-w turbulence model is also often used, which defines

w=¢/(fk) with S =0.09
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=Other Turbulence Models and Simulations

*Nonlinear k-¢ Turbulence Models

*Algebraic Reynolds Stress/Flux Model

*Reynolds Stress/Flux Models

Large Eddy Simulation (LES)

Direct Numerical Simulation (DNS)
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Sediment Transport Modes vEsresiiT]

Bed-Material Load Wash Load

Elevation

Fine

Coarse
Particle Size
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3-D Sediment Transport Equation ]

Sediment transport equation

oc o(c) oluc) ouc) o(wc) a( (%j o oc a( ac)
+ + + — = &, + E— |+—| &, —
ot OX oy 0z 0z ox\_ "ox) oy\ "oy) oz\ "oz

At water surface,

(55 oc + a)scj =0
0z _—

At the interface between bed load and suspended load, a
concentration (at equilibrium condition) may be specified:

but more generally, the entrainment and deposition fluxes at
the interface are specified as
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Depth-averaged 2-D Flow Equations B

Define the depth-averaged quantity:
1z
(D — E“-Zb ¢dZ

Depth-averaging the continuity equation

Z, Z, au
_[ A, dz + =0
Zp aX Zp ay
The Leibniz integral rule
9 udz-u, —= L, +ubxazb + g j udz—-u, — L, + Uy, — a +u,—Uu,=0
OX 9 2 OX OX Zb oy

Application of boundary conditions yields
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=0
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Depth-averaging the x-momentum equation:

z z 2 Zg 8 s
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Application of boundary conditions yields
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Similarly, the depth-averaged y-momentum equation is derived as
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Dispersion momentum transports
__P[%n _11 )2
D, = hjzb(ux U, )%dz

D,y =D, == (u,~U,)u, ~U,)dz

Xy

p=
D, :_szb (u, —U,)%dz

which are usually combined with the turbulent stresses T,,, T,,,

T, and T,, In nearly straight channels. In curved channels, these

dispersion transports need to be modeled additionally.
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Depth-averaged 2-D Sediment Equations B

Define the depth-averaged 2-D suspended-load concentration

_ 1 J‘ * ucdz |
(h—S)U, I+

Depth-averaging the sediment transport equation:

5, 0 2. o(u, 2, O(U,C) 2. (U, 2. A,
j Cd j (uc)dz+_[ & dz+j (uc)dz—_f (mc)dz

Z,+5 Ot ,+8  OZ Z,+6  OZ

—j { ( acﬂdz+jzs {a(gsacﬂdz+rs {8(888(:)}12
7,46 ax @ 7,46 ay 8y 2,46 @Z 82

Use of the Leibniz integral rule and boundary conditions yields

Z,+6  OX 7,46

o(hu,C
o(hC), ohu,C) ahuC) o, £ L ||+ h g§+D +E, - D,
o\ B ox oy o OX oy \ "oy
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The correction factor g, is
ﬁs - jzb+§uSCdz/(Usj‘Zb+5Cdz)

Because f, < 1, it accounts for the temporal lag between flow
and suspended-load transport.

Dispersion fluxes of suspended load:

D, == ["(u,~U,)(c-C)dz
D —_L(* d
sy__ﬁ.ZID (Uy—Uy)(C—C) Z
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If the depth-averaged 2-D suspended-load concentration is

defined as .

C= * cdz
(h_5)jzb+§ Il

The following depth-averaged 2-D equation is obtained:

o(p.hu C
o(hC) , ABhY,C) ABhUC) o), GO Y | I gs@wéy +E,-D,
ot OX oy OX OX oy oy

However, corresponding to definition I1, the suspended-load
discharge should be defined as g.= p,UhC, rather than g.= UhC.

Note that definition | 1s used here.
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The bed-load mass balance equation:

0z, n a(dc,) n A, 0) " a(O‘byqb)
ot ot OX oy

1-p,) =D, -k,

Using relation c,; =q,/(5u,) yields

0
(1_ p;n) azb 4 0 dy n 8(OCbxqb) 4 (abyqb) _ Db . Eb
ot ot u, OX oy

where u, Is the bed-load velocity. Because u, is slower than the
flow velocity, the above equation accounts for the temporal lag
between flow and bed-load transport.
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Summation of bed-load and suspended-load transport equations
yields the total-load transport equation:

0
(- py P OfNC ], T, Oy _
o ol g ) ox oy
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Exchange Flux of Suspended Load Near Bed SRl

Depth-averaged 2-D suspended-load transport equation

a(hu,C
o(hC |, ahu,C) UL o\ C 5 )| 2, p ||+ -p,
o\ B ox oy o OX oy oy

The near-bed deposition flux D, = w.c, needs to be modeled,
because c, Is not solved in a depth-averaged 2-D (1-D) model.

The near-bed concentration c, is often related to the depth-averaged
concentration C by ¢, = a.C, so

D,-E, =a.0.C-aocC,

where « IS the adaptation (recovery) coefficient, and c,. IS
determined by an empirical formula.
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Use of the Rouse distribution yields (Minh Duc, 1998)

(h-z & )"
a“:m_qui:z h—5j dz

Lin (1984) proposed

aC:325+055m(“%j
kU,

which is used by Spasojevic and Holly (1990).
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If the near-bed equilibrium concentration c. Is related to the depth-
averaged equilibrium concentration C. by ¢, = aCs, then

D, -E =0.0C-a.0C,

where o IS the adaptation (recovery) coefficient under the
equilibrium condition, and C.. is determined by an empirical formula.

In equilibrium, a. = a_; in non-equilibrium, o # o, .

Because equilibrium is acquired through exchange between bed
material and moving sediment near the bed, usually for erosion C/c,
< C./c,. and a, > a.; for deposition C/c, > C./c.. and o, < 0.

c*
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The difference between o, and .. Is often assumed to be negligible,
for simplicity. Thus, the net exchange flux can be determined by
(Han, 1980; Wu, 1991)

D,—-E, =aw,(C-C,)
where a Is a new adaptation coefficient.

From aw,(C-C,) = a0 - a,.»,C, , 0ne can derive

C, a=qa,+(c, —ac*)L

a=oa, +(a. —-a,.)
C-C, C-C,

For erosion, usually C/c, < C./c,. and a, > a, thus a < o, and o <
a.~ For deposition, usually C/c, > C./c» and o, < o, thus a < a,
and a < .

c*s
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Armanini and de Silvio’s function:

1—EJr(l—Ejexp -1 S(ajmws
a h h “\h) U,

where a is thickness of the bottom layer.

Zhou and Lin (1998) proposed

R of
o =—+—
4 R
where R=6wm,/(xU,) and g, Is the first positive root of the

following equations:
tg(o) = —% for erosion

2 R .
2¢ctg (o) = F(:_ . for deposition
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Comparison of Armanini and de Silvio’s and Zhou and Lin’s
functions.

10+

|
1
N ittt Zhou-Lin, deposition
“ —————— Zhou-Lin, erosion
] 1
\
1

Armanini-di Silvio

Both functions give a > 1 theoretically.
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Factors Affecting a:

*Cross-sectional shape
Effect of sediment concentration on settling velocity
-Lift force (Saffman force)

*Bed forms

In 1-D models, « Is often given 0.25 for strong deposition; 1.0
for strong erosion; and 0.5 for mild deposition and erosion
(Han, 1980; Wu, 1991).

Calibration of o using measurement data Is recommended for
a specific case study.
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Equilibrium Transport Model ]

Depth-averaged 2-D suspended-load transport equation

o(hU C
0 ( hC +8(hUXC)+ ( y ): 0 h gs£+ D, +i h 53£+Dsy +E, - D,
o\ B ox oy o OX oy oy

2-D bed-load mass balance equation

0
(1_ pr’n) azb 4 0 O i a(Cszclb) i (abyqb) _ Db _ Eb
ot ot u, OX oy

Three unknowns: C, q,, and 0z,/dt, but there are only two
equations. One equation Is needed to close the model.

Equilibrium Transport Model of Bed Load

o :CIb*(U’h’T’dJ/w )
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Bed Change Equations e

For only suspended load

(1- )agt D, -E, =aw,(C-C.)

For only bed load

Oz 1
1 b __
1-p;) p Lb( —0.)
For total load
oz, 1 , | OZ 1
( o pm) ot Lt ( qt*) or (1_ pm)EbZDb_Eb_l_E(qb_qb*)

Note that the difference between L,, L,, and L. L, is the adaptation
length of bed load. L, is the adaptation length of total load. L is
approximately equal to L, in general and reduces to L, in the case

of bed load.
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Non-equilibrium Bed-Load Transport
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From

9,
(1_ p:n) azb 4 0 0, 4 a(Cszqb) n (abyqb) _ Db _ Eb
o otlu OX oy

0z,

1
(1 pm) ot Db o Eb +E(qb _ qb*)

one can derive

0
0 [u j a(Olbxqb) (abyqb) _(qb* )

ot OX oy

Thus, the sediment transport model is also closed.
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2-D Non-equilibrium Transport Model B

Approach I: Bed-Load/Suspended-Load Model

Depth-averaged 2-D suspended-load transport equation

a(hu,C
ofhC) ou,C) dY,C) o) € 51,2 4% p ||l+E -b,
at\ p, OX oy  OX OX oy o

2-D bed-load transport equation

0
0 Equ i a(bexqb) 4 (abyqb) = 1(qb* o qb)
u, OX oy L

ot

Bed change equation

o,

. 1
(1_ pm) ot :Db_Eb+I(qb_qb*)
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Approach Il: Bed-Material Load Model

Depth-averaged 2-D bed-material (or total) load transport equation
o,
(1_ pr )azb n 0 (hctj+ ath 4 qty _

"ot ot B ) ox oy
Sediment near-bed exchange equation
.\ OZ 1
(1- pm) @tb — L (qt _qt*) = O Wy (Ct _Ct*)

Combining the above equations yields

ot\ B OX oy OX OX oy
T (Ct* - Ct )

The last two equations are the governing equations for model approach Il. They
are closed by assuming r.=q../d. and relations for 3, and o,

0 (hc:tj+ ahu,C) , ahu,C) 2 Hgs arc,) , szﬂ+ Kkl Hgs arC,) Dsyﬂ
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Adaptation Length of Sediment B

For suspended load
Uh

aw,

L, =

For bed load, L, is closely related to bed forms, and assumed to
take the length of the dominant bed forms.

For bed-material load

L, = max{L,, L} or  L=@-r)L+rL

This option gives more
stable solution

For wash load, a Is set as zero and L, is given infinitely large.

Calibration of L, and L, using site specific data is recommended.
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Non-uniform Sediment Transport B

Percentage or Cumulative Percentage (%)

In the case of low sediment concentration, the interactions among
the moving sediment particles are usually negligible, so that each
size class of the moving sediment mixture can be assumed to
have the same transport behavior as uniform sediment.

Therefore, the sediment mixture i1s divided to N size classes.

100 _ How many classes are enough?
N Suitable to the study case

Restricted by measurement
accuracy

Restricted by computational
efficiency
o Size classes cover all bed load,
N P S WA suspended load, bed material, and
57 < W R l l; i bank material
i l,d.. A l ,0, f o Each size class has bed load and
Grain Size. (mm) suspended load

34
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% Finer by Weight
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Representative Size of Each Class B

Given the lower and upper bounds of sediment
Size of each size class, the representative size Is
determined as

di — \/di,lowerdi,upper

di — (di,lower + di,Upper)/Z

or

di = (di,lower T di,upper + \/di,lowerdi,upper )/3
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The transport of the kth size class of suspended load is described by

o(hu C
a(hckj+ ohY,Cy) + (hV,C) -9 {h(é‘séck+ szkﬂ+a{h(8sack+ Dsykﬂ

ot\ By OX oy OX OX oy oy
+aw, (C, —C,) (k=12,...,N)

The transport of the kth size class of bed load:

0
0 (0 io% n 5(abxqbk) + (abyqbk) — l(qb*k — qbk) (k 21, 2, ceey N)
ot\ u,, OX oy L

The fractional bed change is determined by

[ OZ 1
(1_ pm)(abj :aa)sk(ck _C*k)+t(qbk _qb*k) (k =12..., N)
k

The total bed change Is determined by % :i(%j
k=1 k
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Bed Material Sorting

The bed material is divided to an adequate number of layers. The
first (surface) layer is called the mixing layer.

Deposition Erosion
................... Mixing T
..... fo | BSESEEE  layer BRI
B s IR e O
/ [ be(tzwir;%le ]
Ist & 2nd

7
7 %, % %

4 [+ At 4 L+ AL

The change in size composition of the mixing layer is determined by
8(5m pbk) _ (%j + p;k(a5m _ 8ij (k -12... N)
ot ot ), ot ot

where o, Is the mixing layer thickness; p,, s the size composition.
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Bed Material Sorting (cont’d)

If no exchange between the second and third layers, the change in
size composition of the second layer is determined by

a(55 psbk) —_n" (a5m . azbj

pe Pok ot ot

where pg, IS the fraction of the kth size class of bed material
contained in the second layer, J, Is the thickness of the second
layer, and

. [Py ifoz,/ot-085, /ot =0
Powc = D, ifdz,/6t—068. /ot<0
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Mixing Layer Thickness

The thickness of the mixing layer is related to the time scale
under consideration. For very short, intermediate, and long time,
It may be at the order of sediment size, bed form height, and bed

deformation thickness, respectively.
Available methods for mixing layer thickness:

5, =(0.1~0.2)h (Karim and Kennedy, 1982)
= d,L (Borah et al., 1982)
(1_ pm) pbm
0., =2d, Lo (Van Niekerk et al., 1992)
Tes0

5. =max|0.5A, 2d.,] (Wu and Vieira, 2002)
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3-D Sediment Transport Model m

Suspended-load transport equation

oc , o(uc) o(u,c) L 0ue) d(ac) _ a(g 8c)+8 g@+§(5@)
o ox oy 0z oz ox\_“ox) oy\ "oy) oz\ ‘oz

At the interface between bed load and suspended load:

Bed-load transport equation

0 a a(abxqb) a(abbe)
ot\ u, OX oy

Bed change equation

= (qb* Gy)

0z, 1
(- pn)—=> pe =D, —E, +I(qb —0.)
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Computational Conditions B

Left Bank

Inlet Outlet

Island

Right Bank

1. Initial Bed Material Gradation
2. Time Series of Inflow Sediment Discharge
3. Inflow Sediment Gradation
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Boundary Conditions R
Inlet
Q my QS qms
qbk Bbkr:lbd qsk B km d
.[o g y -[0 q4-ay

Outlet
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1-D Non-equilibrium Transport Model PR

Sediment Transport Equation

O(AC,) . Q

= P (Qt Q.. )=0q,

Bed Change Equation

44



Clarkson

1-D Equilibrium Transport Model ]

Local Equilibrium Assumption

Mass Balance — Exner Equation
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Sediment Overloading LOEL]

QA

\/Over-loaded (0,=20.)
Qz:Qz*
Equil. Model ~ o

7

"
/‘"‘%Und@r-loaded (0,=0)

& t - » ®

1 2 i i+1 I X
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Channel Degradation (Newton, 1951)
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Baffles

Sand Feed
Elevator

L=9.14m, D=0.3048m

Weir

N

O, sand T
< 30ft > P
Fx Flow Discharge | Sediment Size | Initial Bed | Imitial | Final | Duration
P- (1113.-"5) (mm) Slope (m/m) | 1y 1, (hour)
Run 3 0.00566 0.69 0.0061 0.016 | 0.012 27
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Simulation using an Equilibrium Model ]

Bed Elevation (m)

0
e Experimental Data
-0.01 - —— Yang-27hr
—— Yang-12hr
—— Yang-4hr
0.02 - YAWZ g
——Yang-2.17hr
3 . —— Yang-lhr
-0.03 1 " - — Initial Bed
0.04 -
-0.05 A
-0.06 -
-0.07 A
'008 T T T T T T T T T

0 1 2 3 4 5 6 7 8 9 10

Distance Downstream (m)

49



Clarkson

Simulation with a Non-equilibrium Model ]




sSummary

Clarkson

of Non-Equilibrium Transport Model SN

» Well posed mathematically.

 Consid

ers the temporal and spatial lags between flow and

sediment transport;

» Easily
(strong

» Easily

nandle the constrained sediment loading problem
y over- or under-loading);

nandle the hard bottom problem:

 Calculate bed load and suspended load separately or
combine them as bed-material load;

 Calculate wash load and bed-material load using a unified
transport equation;

« More stable than the traditional equilibrium transport

model.
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W. Wu (2007), Computational River Dynamics, Taylor & Francis, UK, 494 p.
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